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Classical and quantum transport in rectangular antidot superlattices
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Experiments on antidot superlattices with a variety of rectangular geometries are used to test basic symmetry
relations. Depending on the direction of current flow with respect to lattice orientation, different classical
periodic orbits are probed. The symmetry relations also persist into the quantum-mechanical regime. Our
experimental results show that a quantum effect like the Shubnikov–de Haas oscillations can be modified for
the current direction where the resistance is influenced by classical trajectories and periodic orbits.
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Antidot superlattices1–4 represent a versatile system
study electron transport in periodic potentials. A period
array of potential pillars exceeding the Fermi energy
height is superimposed on a two-dimensional electron
~2DEG!. Usually the elastic mean free path is much larg
than the lattice period while the Fermi wavelength is ty
cally an order of magnitude smaller than the characteri
features of the artificial superlattice. The electrons are c
sidered to behave like billiard balls bouncing around in
antidot potential landscape. In a magnetic field applied p
pendicular to the 2DEG the electrons travel around group
antidots once the cyclotron diameter is commensurate w
the lattice period. A calculation based on classical cha
dynamics explains quantitatively the observed transp
properties.5 A quantum transport calculation of the longitu
dinal and Hall resistivity of square lattices also yields resu
in agreement with experimental data.6 Experimentally pro-
nounced maxima occur in the magnetoresistance which
related to periodic orbits around groups of antidots. The
sistivity tensor of a square lattice is isotropic and no dep
dence on the direction of current flow is theoretically e
pected or experimentally observed.

In this paper we study lattices with a rectangular symm
try where the transport properties depend strongly on
direction of current flow with respect to the lattic
orientation.7 For current flow along the long lattice perio
the electrons are forced between the closely spaced ant
and the magnetoresistance displays pronounced maxim
magnetic fields commensurate with the lattice period. In
perpendicular direction where the electrons predomina
flow in the channels between the rows of antidots only orb
whose size is comparable with the large lattice cons
manifest themselves in the magnetoresistance. In orde
550163-1829/97/55~4!/2237~5!/$10.00
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investigate how quantum properties arise in antidot supe
tices whose classical behavior is well understood we perfo
measurements at low temperatures,T,100 mK, where both
elastic and inelastic scattering lengths are larger than
length of the relevant periodic orbits. In this case additio
quantum oscillations in the magnetoresistance are supe
posed on the classical peaks whose periodicity depend
the direction of current flow. For the direction where th
resistance is dominated by the influence of periodic orb
around single antidots we findB-periodic quantum oscilla-
tions reminiscent of Aharanov-Bohm oscillations while f
the perpendicular direction 1/B-periodic Shubnikov–de Haa
~SdH! oscillations are observed. These results show t
there is a close relation between quantum corrections
transport properties and classical periodic orbits. We co
pare our experimental results to recent semiclass
theories8,9 and to a quantum-mechanical approach.10 The lat-
ter theory by Neudert, Rotter, Ro¨ssler and Suhrke~NRRS!
shows that the anisotropic miniband structure in a tw
dimensional rectangular potential is responsible for the
ferent quantum oscillations.

The fabrication process starts from a GaAs/AlxGa12xAs
heterostructure that contains a 2DEG 65 nm below the
face. Its electron density isns5331015 m22 and the elastic
mean free path isl e58 mm. Two Hall geometries which are
oriented perpendicular to each other are defined by wet e
ing and provided with Ohmic contacts~AuGe/Ni!. This setup
is suitable to experimentally determine the components
the resistivity tensor. The antidot pattern is produced by e
tron beam lithography and transferred onto the sample b
carefully tuned wet etching step. Figure 1 shows an image
the surface of a wet etched rectangular lattice with peri
ax5960 nm anday5240 nm. Each antidot is well develope
2237 © 1997 The American Physical Society



le
t

fro
tro
e

o
vit
n

xi
A
f
it

re
in
b
s
e
he
t

ri

n
its

im
e

bo
h

an
la
or

um

in

t,
try
he
at
is

in
he

ve-

iod
li-
.
E
a

ots

ice
r-
at

oth
ifi-

2238 55SCHUSTER, ENSSLIN, KOTTHAUS, BO¨ HM, AND KLEIN
and the variation in size is remarkably small. The who
structure is covered by a gate metal which allows us
change the Fermi energy in the system. We present data
various rectangular lattices with a whole range of aniso
pies between the lattice constants. In this paper we denot
ax the long period of the lattice and byay the short one. For
the current flow along thex direction the electrons have t
flow through the closely spaced antidots and the resisti
component isrxx . If the current flows through the wide ope
channelsryy is the respective resistivity component.

Figure 2~a! presents the magnetoresistancesrxx and ryy
for a rectangular lattice with an anisotropyax :ay5480
nm:240 nm5 2:1. A pronounced maximum occurs inrxx at
aroundB'1 T. As in the case of square lattices this ma
mum reflects a periodic orbit around a single antidot.
smaller magnetic fields, 0<B<0.5 T, there is a series o
further commensurability maxima corresponding to orb
around groups of antidots@see inset in Fig. 2~a!#. The orbit
around two antidots which is unlikely to occur in squa
lattices for geometrical reasons becomes more probable
rectangular lattice. A completely different behavior is o
served when the current flows through the wide channel
the direction of the short period of the lattice. The magn
toresistanceryy shows no structure in the regime where t
pronounced maximum inrxx occurs. The observation tha
commensurability oscillations mainly show up inrxx but not
in ryy can be explained by a different coupling to the pe
odic orbits around the antidots.7 The electrons traveling
along chaotic trajectories within the wide channels are o
slightly influenced by the presence of the periodic orb
Only at small magnetic fieldsB<0.5 T where the periodic
orbits extend into the channels is the magnetoresistance s
larly influenced for both current directions. The quantum m
chanical theory by NRRS~Ref. 10! calculating the band
structure for this system and the conductivity from the Ku
formula reproduces all the features of the experiment. T
strongly anisotropic behavior ofrxx andryy can be traced to
differences in the magnetic-field dependence of band
scattering contributions to the conductivity. These calcu
tions give new insight how the dispersion of minibands c

FIG. 1. Image of a wet etched surface of a GaAs/AlxGa12xAs
heterostructure. The rectangular antidot pattern with lattice per
ax5960 nm anday5240 nm was produced by electron beam
thography. The image is taken with an atomic force microscope
a magnetic field is applied perpendicular to the plane of the 2D
the electrons travel around groups of antidots as it is schematic
shown in the figure.
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responds to classical trajectories.
In all rectangular antidot samples a pronounced maxim

is observed at small magnetic fields~Figs. 2–4!. The maxima
indicated by the vertical arrows in Figs. 2 and 3 occur
rxx as well as inryy . In the following we argue that the
maximum originates from a different physical effec
namely, the scattering of electrons in the wirelike geome
in analogy to boundary scattering in quantum wires. T
magnetoresistance of quantum wires displays a maximum
low magnetic fields where the classical cyclotron radius
roughly twice as large as the widthW of the wire,
0.55Rc'W.11 This effect has been first observed in th
metal films12 and was explained by diffusive scattering at t
rough boundaries of the system.13 Diffusive scattering re-
quires any roughness to be larger or equal to the Fermi wa

s
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G
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FIG. 2. ~a! Magnetoresistance atT54.2 K for a rectangular
antidot lattice for current flow through the closely spaced antid
(rxx) and through the wide channels (ryy). The anisotropy between
the two lateral periods isax :ay5480 nm:240 nm52:1. The inset in
~b! clarifies the different current directions with respect to the latt
orientation. The peaks inrxx can be ascribed to commensurate o
bits around groups of antidots. An additional maximum arises
low magnetic fields for both current directions~indicated by a ver-
tical arrow!. ~b! Hall resistance for the sample as measured for b
current directions. The curve in the lower corner shows a magn
cation ofrxy andryx aroundB50.
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55 2239CLASSICAL AND QUANTUM TRANSPORT IN . . .
lengthlF . For small magnetic fields the electrons travel pr
dominantly in the wire center and rarely reach the wi
edges. At high fields skipping orbits arise along the edges
the wire. For intermediate fields the diffusion is reduced a
a maximum in the resistance arises. In rectangular anti
lattices the situation is very similar. Although the scatterin
in our samples is mostly specular, a similar effect is likely
occur at the corrugated boundaries of the wide chann
which are formed by the antidot rows. The correlation leng

FIG. 3. Magnetoresistance for a rectangular antidot lattice f
both directions of current flow. The anisotropy between the tw
lateral periods isax :ay54800 nm:240 nm520:1. The experiment
is done atT540 mK. Many commensurability oscillations are ob
served inrxx corresponding to electron orbits around 1,2, . . . ,18
antidots. Superimposed are SdH oscillations forB>0.1 T. The
maximum which is related to scattering at the corrugated boun
aries formed by the antidot rows is indicated by an arrow.

FIG. 4. Magnetoresistance for a rectangular lattice with an a
isotropy of ax :ay5960 nm:240 nm54:1. The superimposed SdH
oscillations inryy are periodic in 1/B while in rxx additional oscil-
lations arise~see arrows!.
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of the roughness is now given by the short period of
lattice. The width of the quasiwire between the rows is not
well defined as in the case of single wires. An upper boun
the size of the larger period minus the diameter of the a
dots. For the sample withax:ay5480 nm:240 nm
we find a value Wmax'300 nm compared with
W50.55Rc'250 nm from the edge roughness scatter
model.

In square lattices the periodic orbits influence the mag
toresistance as well as the Hall resistance.4 The plateaulike
features in the Hall effect are related in their magnetic-fi
position to the occurrence of maxima in the magnetore
tance. This is explained by similar classes of trajectories
are thought to cause these two effects. The Hall effect o
rectangular lattice is presented in Fig. 2~b!. While the mag-
netoresistance is highly anisotropic and strongly depend
on the current direction the Hall effect is isotropic within th
accuracy of the experiment,urxyu5uryxu.

7 This is a direct
consequence of Onsager’s relation14 which reflects the equal
ity of the off-diagonal components of the resistivity tens
under reversal of the magnetic field, i.e.,rxy(B)
5ryx(2B). A rectangular lattice is symmetric under reve
sal of the magnetic field which explains the symmetry of t
Hall effect as observed in Fig. 2~b!. This general symmetry
relation, however, does not explain the microscopic origin
the observation.

Figure 3 presents the magnetoresistance of a lattice
an extreme anisotropy ofax :ay54800 nm:240 nm520:1. At
B50 the resistance in the barrier-dominated geome
(rxx) is much larger than that of the wirelike geomet
(ryy) in agreement with geometrical considerations.
higher fieldsB>50 mT a remarkable number of maxim
arises inrxx while ryy shows no classical commensurabili
effects. The oscillations inrxx are exactly 1/B periodic. The
linear behavior agrees nicely with the commensurability c
dition 2Rc5nay in the sense that the size of the electr
orbits around 1,2,3, . . . ,18 coincides with the classical cy
clotron diameter~see left inset of Fig. 3!. Superimposed are
SdH oscillations which are also periodic in 1/B and which
occur in bothrxx andryy .

To explain the effects in lattices with large anisotropies
different point of view can be adopted. If the electrons tra
in the direction of the closely spaced antidots they can
backscattered once the cyclotron diameter fits a multiple
teger of the short lattice perioday ~see right inset of Fig. 3!.
Similar electron focusing experiments have been done
specially designed parallel point contact geometries15 where
one point contact serves as an injector and a second one
collector. If a magnetic field is applied perpendicular to t
plane of the 2DEG the number of electrons which reach
collector has a maximum whenever the cyclotron diame
coincides with the distanceL of the point contacts,
2Rc5L. In antidot lattices this leads to an enhanced ba
scattering. The resonance condition 2Rc5nay for the occur-
rence of a maximum is the same as if one considers peri
orbits around groups of antidots. Both points of view rely
ballistic classical trajectories in spite of their different co
ceptual background.

All the data presented so far have been explained in
framework of classical dynamics. At very low temperatur
T,100 mK, it is possible to resolve the SdH oscillations
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the magnetic-field range where classical commensurab
oscillations occur. The data in Fig. 3 suggest that SdH~fast!
and commensurability~slow! oscillations may coexist in
rectangular antidot lattices with large anisotropies. Here S
oscillations which are in phase for both current directions
exactly periodic in 1/B up to high filling factorsn<120. At
higher temperatures,T>1 K, the SdH oscillations disappea
in this magnetic-field range while the classical maxima
main. There are large regions of unpatterned 2DEG’s
tween the antidot rows so that the free cyclotron orbits
hardly influenced by the presence of the antidots.

If the antidot rows are moved closer together we exp
deviations from the 1/B-periodic behavior since the numbe
of cyclotron orbits which are modified by the antidot pote
tial increases. We discuss these phenomena in a diffe
rectangular lattice presented in Fig. 4. Here the lattice p
ods areax :ay5960 nm:240 nm54:1. Again the dominant
structures inrxx are the maxima which correspond to cycl
tron orbits around groups of antidots. The superimposed S
oscillations inryy are periodic in 1/B while additional oscil-
lations appear inrxx ~marked by arrows in Fig. 4!. It is
remarkable that the commensurability effects can be s
also inryy as an envelope of the SdH maxima. This indica
that the electrons which flow through the wide channels
also influenced slightly by the periodic orbits. If the distan
between neighboring rows is reduced further the periodi
of the SdH oscillations in the two directions of current flo
becomes more different. This is obvious from the data o
sample with an anisotropyax :ay5480 nm:240 nm52:1
which is presented Fig. 5. The oscillations inrxx , which are
superimposed on the strongly pronounced maximum
2Rc5ay , deviate from the 1/B periodicity in ryy . In this
magnetic-field range (0.6<B<1 T!, where the electrons

FIG. 5. Magnetoresistance and Hall resistance for a rectang
lattice with an anisotropy ofax :ay5480 nm:240 nm52:1 at
T530 mK. In the magnetic-field regime, where the maximum c
responding to a classical periodic orbit around a single antidot
curs,B-periodic oscillations are observed inrxx while the oscilla-
tions in ryy are periodic in 1/B. The positions of the resistanc
minima in rxx which are obtained from Drxx

5rxx~30 mK!2rxx~4.2 K! are equidistant on theB scale~inset!.
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classically encircle a single antidot, the oscillations are
mostB periodic ~see inset in Fig. 5!. For higher magnetic
fields B.1.5 T there is a crossover to 1/B-periodic SdH
oscillations. In the quantum Hall regime the filling facto
for rxx andryy are identical.

As has been already shown the Hall resistance does
depend on the direction of current flow while the magneto
sistance is highly anisotropic. This general symmetry re
tion also applies in the magnetic-field regime where class
effects and quantum oscillations coexist. There are quan
oscillations superimposed on the classical Hall resista
~appearing as plateaulike structures in our experiment!. In
the magnetic-field regime 0.5<B<1.5 T these quantum os
cillations in the Hall resistance are not in phase with t
oscillations in rxx and ryy . Only for magnetic fields
B.1.5 T whereax ,ay>2Rc and commensurability effect
are no longer present the plateaus in the Hall resistance
quantized values and are in phase with the SdH oscillati
in rxx andryy .

Weisset al.16 have observed quantum oscillations sup
imposed on the classical peak in square antidot lattices.
pending on the antidot potential the periodicity can chan
from aB periodicity similar to Aharonov-Bohm oscillation
to a 1/B periodicity familiar from SdH oscillations. The au
thors have calculated the contribution of a few simple pe
odic orbits to the density of states using Gutzwiller’s tra
formula.17 The quantum oscillations are attributed to the o
cillatory structure of the density of states. Since the den
of states should be isotropic this model cannot be applie
rectangular lattices with their anisotropies of the periods
the quantum oscillations. Using the Kubo formula Richte8

and Hackenbroich and von Oppen9 independently derived an
analytical semiclassical expression for the quantum contr
tions to the conductivity in terms of periodic orbits. Th
contribution of each periodic orbit oscillates as a function
Fermi energy and magnetic field with a phase determined
its classical actionSPO(EF ,B)5*p•dr . The amplitude de-
pends on the stability and the velocity correlations along
periodic orbits. It is found that only a few of the infinitel
many periodic orbits give a significant contribution.

This formalism provides a qualitative understanding
the relation between classical trajectories and the obse
quantum oscillations. Different periodic orbits and trajec
ries are important for describing the transport in the t
lattice directions which leads to different quantum contrib
tions in rxx andryy . We discuss the magnetic-field regim
where the classical cyclotron diameter matches the short
tice period. Electron transport through the wide channel
only weakly influenced by periodic orbits. In this direction
current flow mainly unperturbed cyclotron orbits contribu
to the quantum oscillations. Their actionSPO5eBA(B) leads
to the well known 1/B periodicity of the SdH oscillations
since the enclosed areaA(B)5pRc

2 scales with 1/B2. How-
ever, if the current flows through the closely spaced antid
the contributions of periodic orbits around single antido
play a major role. Their actionSPO(EF ,B) determines the
periodicity of the quantum oscillations. Since it is difficu
for the cyclotron orbits to contract with increasing magne
field the area enclosed by the orbits deviates from the 1B2

behavior. The quantum oscillations are no longer periodic
1/B. In the magnetic-field regime where the enclosed a

lar
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55 2241CLASSICAL AND QUANTUM TRANSPORT IN . . .
remains approximately constant with magnetic field we fi
B-periodic oscillations. This behavior can be seen in
magnetic field range 0.6<B<1.1 T ~Fig. 5!. The quasi-
B-periodic oscillations with a periodDB5h/eA'90 mT are
caused by circular orbits which enclose a constant a
A5p(ay /2)

2. In the Hall resistance both the unperturb
and the modified orbits contribute to the plateaulike str
tures. It is difficult, however, to establish their particular i
fluence.

The behavior of the quantum oscillations in rectangu
lattices is confirmed by the theory of NRRS~Ref. 10! which
evaluates the Kubo formula to obtain the components of
conductivity. Two contributions to the diagonal compone
can be distinguished; the band conductivity related to a n
vanishing group velocity in a dispersive miniband and
scattering conductivity associated with scattering betw
minibands. The influence of scattering and band conducti
in rectangular lattices is dependent on the direction and
magnetic field. For magnetic fields whereay,2Rc the con-
ductivity sxx is dominated by scattering contributions as in
2DEG and SdH oscillations are found inryy . The other
componentsyy is determined by the band conductivity du
to the influence of the antidot potential which gives rise
the dispersion. This leads to commensurability oscillation
z-
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rxx superimposed by quantum oscillations out of phase w
the SdH oscillations. The different periodicity of the qua
tum oscillations inrxx andryy is a direct consequence of th
magnetic-field dependence of the miniband structure in
respective lattice directions.

In summary, we have reported a series of experiments
rectangular antidot lattices that span a whole range
anisotropies of the two lattice constants. The classical p
odic orbits have a different influence on the resistance tra
depending on the direction of current flow with respect to
lattice. The quantum oscillations which are superimposed
the classical commensurability maxima are modified by
presence of the periodic orbits. These results contribute
wards the understanding of how quantum properties m
arise in superlattices whose classical dynamics is well un
stood.
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